
INSERTION SORT 

 Idea: like sorting a hand of playing cards 

 Start with an empty left hand and the cards facing down 

on the table. 

 Remove one card at a time from the table, and insert it 

into the correct position in the left hand 

 compare it with each of the cards already in the hand, from 

right to left 

 The cards held in the left hand are sorted 

 these cards were originally the top cards of the pile on the 

table 
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INSERTION SORT 
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To insert 12, we need to 

make room for it by moving 

first 36 and then 24. 
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INSERTION SORT 
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5      2      4      6      1      3 

input array  

left sub-array right sub-array 

at each iteration, the array is divided in two sub-arrays: 

sorted unsorted 
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INSERTION-SORT 
Alg.: INSERTION-SORT(A) 

 for j ← 2 to n 

  do key ← A[ j ] 

        Insert A[ j ] into the sorted sequence A[1 . . j -1] 

       i ← j - 1 

       while i > 0 and A[i] > key 

   do A[i + 1] ← A[i] 

         i ← i – 1 

       A[i + 1] ← key 

 Insertion sort – sorts the elements in place 
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LOOP INVARIANT FOR INSERTION SORT  

Alg.: INSERTION-SORT(A) 

 for j ← 2 to n 

  do key ← A[ j ] 

        Insert A[ j ] into the sorted sequence A[1 . . j -1] 

       i ← j - 1 

       while i > 0 and A[i] > key 

   do A[i + 1] ← A[i] 

         i ← i – 1 

       A[i + 1] ← key 

8 Invariant: at the start of the for loop the elements in A[1 . . j-1] 
are in sorted order 



PROVING LOOP INVARIANTS 
 Proving loop invariants works like induction 

 Initialization (base case):  

 It is true prior to the first iteration of the loop 

 Maintenance (inductive step):  

 If it is true before an iteration of the loop, it remains true before 

the next iteration 

 Termination:  

 When the loop terminates, the invariant gives us a useful property 

that helps show that the algorithm is correct 

 Stop the induction when the loop terminates 
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LOOP INVARIANT FOR INSERTION SORT 
 Initialization:  

 Just before the first iteration, j = 2: 

 the subarray A[1 . . j-1]  = A[1], (the 

element originally in A[1]) – is sorted 
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LOOP INVARIANT FOR INSERTION SORT 
 Maintenance:  

 the while inner loop moves A[j -1], A[j -2], A[j -3], and so on, 

by one position to the right until the proper position for key 

(which has the value that started out in A[j]) is found   

 At that point, the value of key is placed into this position. 
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LOOP INVARIANT FOR INSERTION SORT 
 Termination:  

 The outer for loop ends when j = n + 1  j-1 = n 

 Replace n with j-1 in the loop invariant:  

 the subarray A[1 . . n] consists of the elements originally in A[1 . . n], 
but in sorted order 

 

 

 

 The entire array is sorted!  
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j j - 1 

Invariant: at the start of the for loop the elements in A[1 . . j-1] 
are in sorted order 



ANALYSIS OF INSERTION SORT 
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INSERTION-SORT(A) 

 for j ← 2 to n 

  do key ← A[ j ] 

    Insert A[ j ] into the sorted sequence A[1 . . j -1] 

       i ← j - 1 

       while i > 0 and A[i] > key 

   do A[i + 1] ← A[i] 

         i ← i – 1 

       A[i + 1] ← key 
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tj: # of times the while statement is executed at iteration j  



BEST CASE ANALYSIS 
 The array is already sorted 

 A[i] ≤ key upon the first time the while loop test is run (when i = j 

-1) 

 tj = 1 

 T(n) = c1n + c2(n -1) + c4(n -1) + c5(n -1) + c8(n-1) = (c1 + c2 

+ c4 + c5 + c8)n + (c2 + c4 + c5 + c8) 

 = an + b = (n)  
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WORST CASE ANALYSIS 

 The array is in reverse sorted order 

 Always A[i] > key in while loop test 

 Have to compare key with all elements to the left of the j-th 

position  compare with j-1 elements  tj = j  

 
 

 

      

     a quadratic function of n 
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“while i > 0 and A[i] > key” 
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using we have: 



COMPARISONS AND EXCHANGES IN 

INSERTION SORT 

INSERTION-SORT(A) 

 for j ← 2 to n 

  do key ← A[ j ] 

    Insert A[ j ] into the sorted sequence A[1 . . j -1] 

       i ← j - 1 

       while i > 0 and A[i] > key 

   do A[i + 1] ← A[i] 

         i ← i – 1 

       A[i + 1] ← key 
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cost  times 
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INSERTION SORT - SUMMARY 

 Advantages 

 Good running time for “almost sorted” arrays (n) 

 Disadvantages 

 (n2) running time in worst and average case 

  n2/2 comparisons and exchanges 
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BUBBLE SORT (EX. 2-2, PAGE 38) 

 Idea: 

 Repeatedly pass through the array 

 Swaps adjacent elements that are out of order 

 

 

 

 

 Easier to implement, but slower than Insertion sort 
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EXAMPLE 
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1 3 2 9 6 4 8 

i = 1 j 

3 1 2 9 6 4 8 

i = 1 j 

3 2 1 9 6 4 8 

i = 1 j 

3 2 9 1 6 4 8 

i = 1 j 

3 2 9 6 1 4 8 

i = 1 j 

3 2 9 6 4 1 8 

i = 1 j 

3 2 9 6 4 8 1 

i = 1 j 
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9 6 4 8 3 2 1 

i = 4 j 

9 6 8 4 3 2 1 

i = 5 j 

9 8 6 4 3 2 1 

i = 6 j 

9 8 6 4 3 2 1 

i = 7 
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BUBBLE SORT 

Alg.: BUBBLESORT(A) 

 for i  1 to length[A] 

  do for j  length[A] downto i + 1 

            do if A[j] < A[j -1] 

           then exchange A[j]  A[j-1]
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BUBBLE-SORT RUNNING TIME 

Thus,T(n) = (n2)
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Alg.: BUBBLESORT(A) 

 for i  1 to length[A] 

  do for j  length[A] downto i + 1 

            do if A[j] < A[j -1] 

           then exchange A[j]  A[j-1] 
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SELECTION SORT (EX. 2.2-2, PAGE 27) 
 Idea: 

 Find the smallest element in the array 

 Exchange it with the element in the first position 

 Find the second smallest element and exchange it with the 

element in the second position 

 Continue until the array is sorted 

 Disadvantage: 

 Running time depends only slightly on the amount of order in 

the file 
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EXAMPLE 
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1 3 2 9 6 4 8 

8 3 2 9 6 4 1 

8 3 4 9 6 2 1 

8 6 4 9 3 2 1 

8 9 6 4 3 2 1 

8 6 9 4 3 2 1 

9 8 6 4 3 2 1 

9 8 6 4 3 2 1 



SELECTION SORT 

Alg.: SELECTION-SORT(A) 

 n ← length[A] 

 for j ← 1 to n - 1 

  do smallest ← j 

        for i ← j + 1 to n 

      do if A[i] < A[smallest] 

       then smallest ← i 

        exchange A[j] ↔ A[smallest] 
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ANALYSIS OF SELECTION SORT 
Alg.: SELECTION-SORT(A) 

 n ← length[A] 

   for j ← 1 to n - 1 

  do smallest ← j 

        for i ← j + 1 to n 

      do if A[i] < A[smallest] 

       then smallest ← i 

        exchange A[j] ↔ A[smallest] 
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