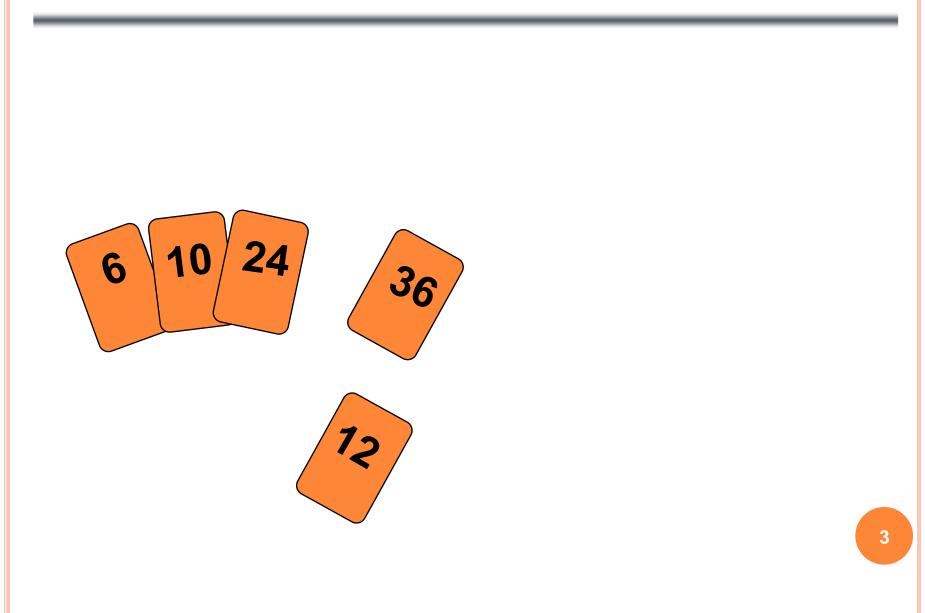
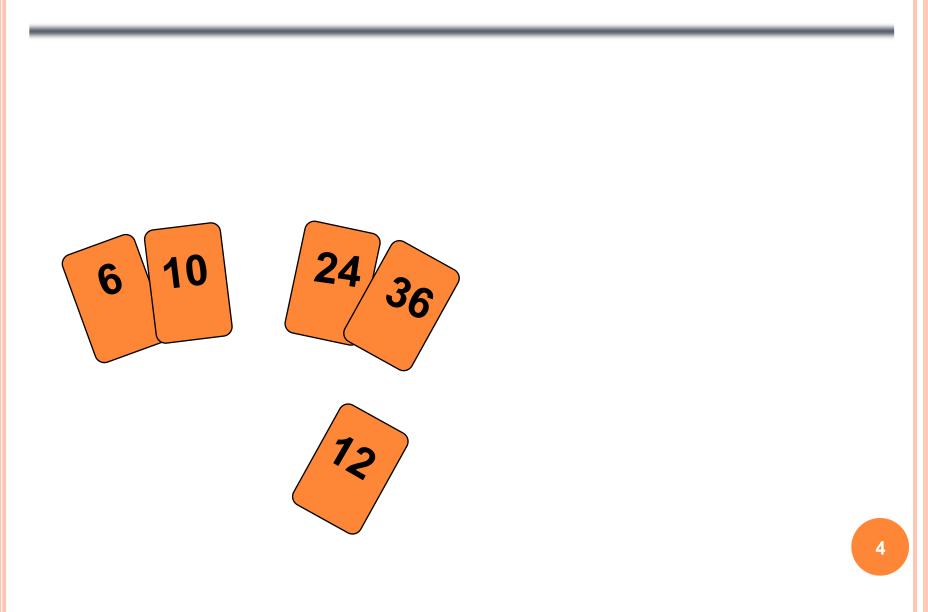
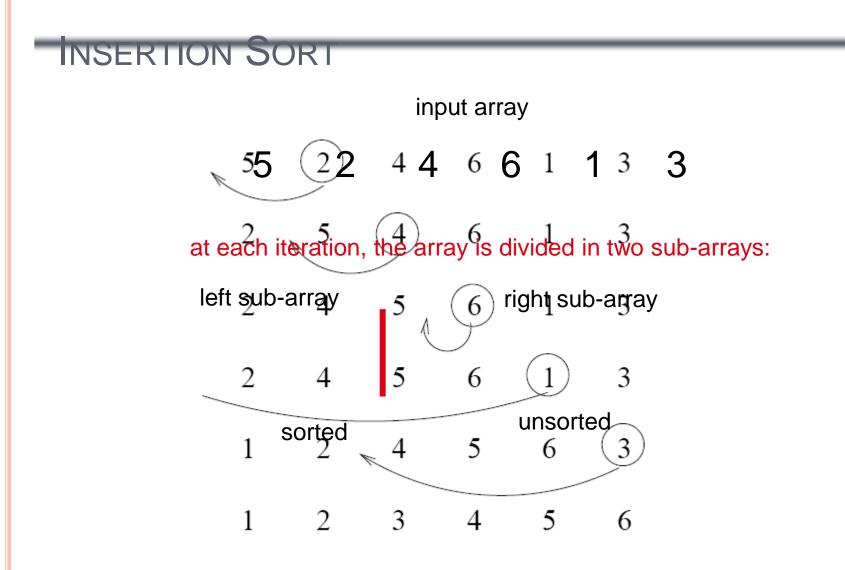
Idea: like sorting a hand of playing cards

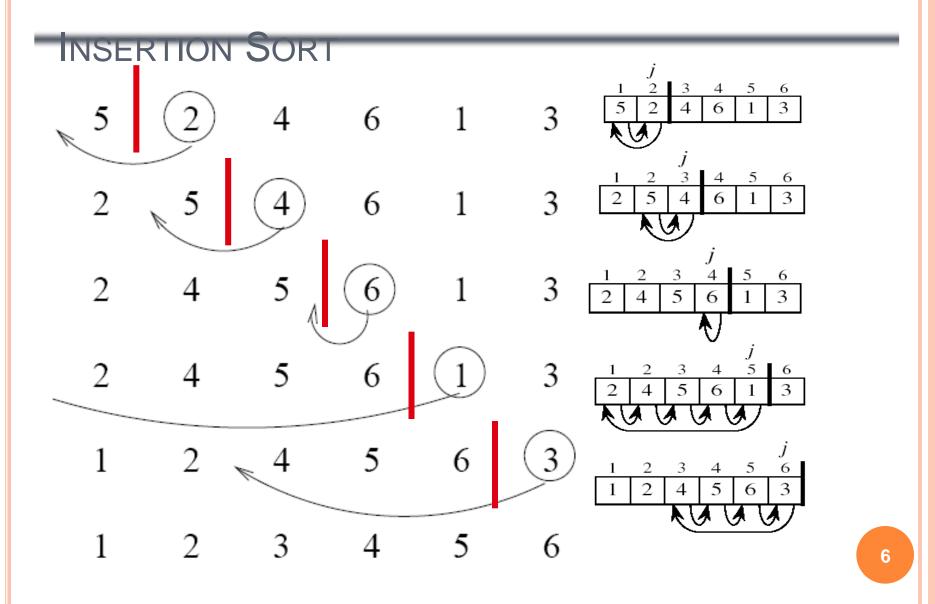
- Start with an empty left hand and the cards facing down on the table.
- Remove one card at a time from the table, and insert it into the correct position in the left hand
 - compare it with each of the cards already in the hand, from right to left
- The cards held in the left hand are sorted
 - these cards were originally the top cards of the pile on the table

To insert 12, we need to make room for it by moving first 36 and then 24.



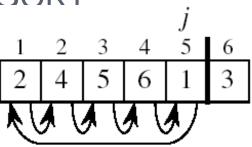






NSERTION-SORT Alg.: INSERTION-SORT(A) 2 3 7 1 4 5 6 8 **for** j ← 2 **to** n a_6 a_3 a_5 a₄ a1 a_2 a_7 a do key $\leftarrow A[j]$ Insert A[j] into the sorted sequence A[1...j-1] [▷]i ← j - 1 while i > 0 and A[i] > key do $A[i + 1] \leftarrow A[i]$ $i \leftarrow i - 1$ $A[i + 1] \leftarrow key$ Insertion sort – sorts the elements in place 0


```
Alg.: INSERTION-SORT(A)
```



do key $\leftarrow A[j]$ Insert A[j] into the sorted sequence A[1..j-1] $i \leftarrow j - 1$ while i > 0 and A[i] > keydo $A[i + 1] \leftarrow A[i]$ $i \leftarrow i - 1$ $A[i + 1] \leftarrow key$

Invariant: at the start of the **for** loop the elements in A[1..j-1] are in sorted order

PROVING LOOP INVARIANTS

Proving loop invariants works like induction

o Initialization (base case):

• It is true prior to the first iteration of the loop

• Maintenance (inductive step):

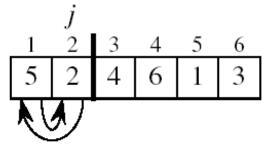
 If it is true before an iteration of the loop, it remains true before the next iteration

• Termination:

- When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct
- Stop the induction when the loop terminates

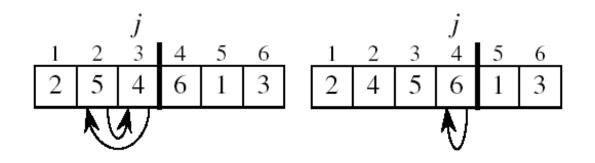
LOOP INVARIANT FOR INSERTION SORT Initialization:

 Just before the first iteration, j = 2: the subarray A[1..j-1] = A[1], (the element originally in A[1]) – is sorted



• Maintenance:

- the while inner loop moves A[j -1], A[j -2], A[j -3], and so on, by one position to the right until the proper position for key (which has the value that started out in A[j]) is found
- At that point, the value of key is placed into this position.



• Termination:

- The outer **for** loop ends when $j = n + 1 \Rightarrow j-1 = n$
- Replace **n** with j-1 in the loop invariant:
 - the subarray A[1..n] consists of the elements originally in A[1..n], but in sorted order

Invariant: at the start of the **for** loop the elements in A[1..j-1] are in sorted order

ANALYSIS OF INSERTION SORT		
ANALYSIS OF INSERTION SORT INSERTION-SORT(A)	cost	times
for j ← 2 to n	C ₁	n
do key ← A[j]	C ₂	n-1
$_{igstarrow}$ Insert A[j] into the sorted sequence A[1 j -1] 0	n-1
i ← j	C ₄	n-1
<pre>while i > 0 and A[i] > key</pre>	C ₅	$\sum_{j=2}^{n} t_{j}$
do A[i + 1] ← A[i]	С ₆	$\sum_{j=2}^{n} (t_j - 1)$
i ← i – 1	С ₇	$\sum_{j=2}^{n} (t_j - j)$
A[i + 1] ← key	C ₈	n-1
	-	

 t_j : # of times the while statement is executed at iteration j

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^n t_j + c_6 \sum_{j=2}^n (t_j - 1) + c_7 \sum_{j=2}^n (t_j - 1) + c_8 (n-1) + c$$

BEST CASE ANALYSIS The array is already sorted "while i > 0 and A[i] > key" • $A[i] \leq key$ upon the first time the **while** loop test is run (when i = j-1) • t_i = 1 • $T(n) = c_1 n + c_2 (n - 1) + c_4 (n - 1) + c_5 (n - 1) + c_8 (n - 1) = (c_1 + c_2)$ $+ c_4 + c_5 + c_8 n + (c_2 + c_4 + c_5 + c_8)$ = an + b = $\Theta(n)$ $T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$

WORST CASE ANALYSIS

The array is in reverse sorted order "while i > 0 and A[i] > key"

- Always A[i] > key in while loop test
- Have to compare key with all elements to the left of the j-th position \Rightarrow compare with j-1 elements \Rightarrow t_j = j

using
$$\sum_{j=1}^{n} j = \frac{n(n+1)}{2} \Rightarrow \sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1 \Rightarrow \sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$
 we have:
 $T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right) + c_6 \frac{n(n-1)}{2} + c_7 \frac{n(n-1)}{2} + c_8 (n-1)$

 $=an^2+bn+c$ a quadratic function of n

• $T(n) = \Theta(n^2)$ order of growth in n^2 $T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^n t_j + c_6 \sum_{j=2}^n (t_j - 1) + c_7 \sum_{j=2}^n (t_j - 1) + c_8 (n-1)$

COMPARISONS AND EXCHANGES IN INSERTION SORT

INSERTION-SORT(A)	cost	times
for j ← 2 to n	c ₁	n
do key ← A[j]	C ₂	n-1
Insert A[j] into the sorted sequence A[1 j -	^{1]} 0	n-1
i ← j - 1 ≈ n²/2 comparisons	5 C ₄	n-1
while i > 0 and A[i] > key	С ₅	$\sum_{j=2}^{n} t_{j}$
$do A[i + 1] \leftarrow A[i]$	с ₆	$\sum_{j=2}^{n} (t_j - 1)$
$i \leftarrow i - 1 \approx n^2/2$ exchanges	s C ₇	$\sum_{j=2}^{n} (t_j - 1)$
A[i + 1]	С ₈	n-116

INSERTION SORT - SUMMARY

Advantages

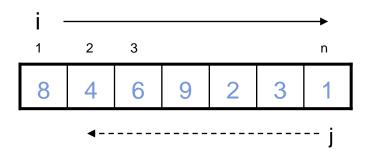
- Good running time for "almost sorted" arrays $\Theta(n)$
- Disadvantages

 - $\approx n^2/2$ comparisons and exchanges

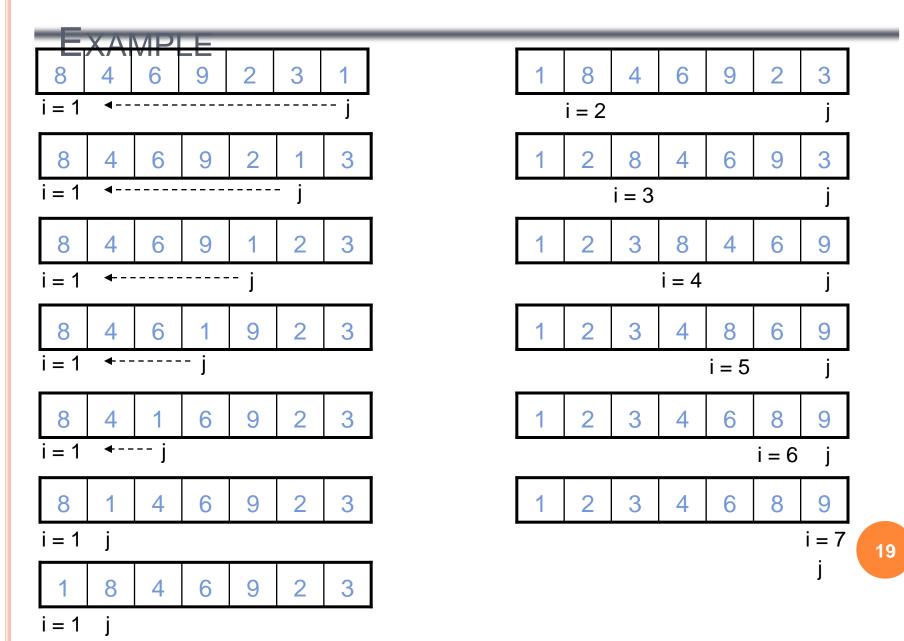
BUBBLE SORT (EX. 2-2, PAGE 38)

o Idea:

- Repeatedly pass through the array
- Swaps adjacent elements that are out of order



• Easier to implement, but slower than Insertion sort



BUBBLE SORI

```
Alg.:BUBBLESORT(A)for i \leftarrow 1 to length[A]do for j \leftarrow length[A] downto i + 1do if A[j] < A[j -1]</td>i then exchange A[j] \leftrightarrow A[j-1]\boxed{8} 4 6 9 2 3 1
```

BUBBLE-SORT RUNNING TIME

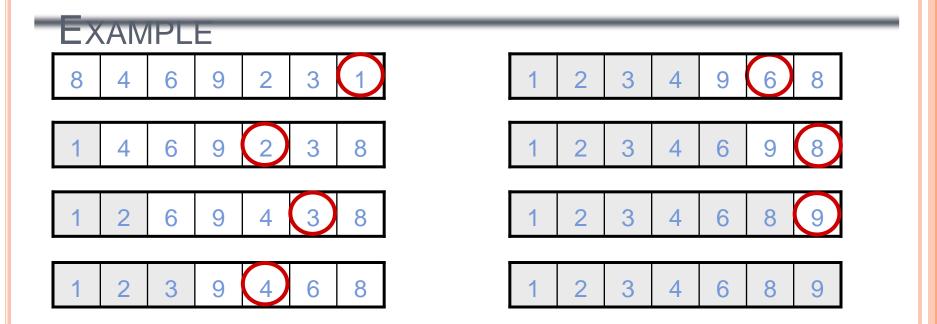
.

$$\mathcal{Alg.: BUBBLESORT(A)}$$
for $i \leftarrow 1$ to length[A] c_1
do for $j \leftarrow \text{length}[A]$ downto $i + 1$ c_2
Comparisons: $\approx n^2/2$ do if $A[j] < A[j-1]$ c_3
Exchanges: $\approx n^2/2$ then exchange $A[j] \leftrightarrow A[j-1]$ c_4

$$T(n) = c_1(n+1) + c_2 \sum_{i=1}^n (n-i+1) + c_3 \sum_{i=1}^n (n-i) + c_4 \sum_{i=1}^n (n-i)$$
 $= \Theta(n) + (c_2 + c_2 + c_4) \sum_{i=1}^n (n-i)$
where $\sum_{i=1}^n (n-i) = \sum_{i=1}^n n - \sum_{i=1}^n i = n^2 - \frac{n(n+1)}{2} = \frac{n^2}{2} - \frac{n}{2}$
Thus, $T(n) = \Theta(n^2)$

SELECTION SORT (Ex. 2.2-2, PAGE 27) o Idea:

- Find the smallest element in the array
- Exchange it with the element in the first position
- Find the second smallest element and exchange it with the element in the second position
- Continue until the array is sorted
- o Disadvantage:
 - Running time depends only slightly on the amount of order in the file



SELECTION SORT

```
Alg.: SELECTION-SORT(A)
                                                   8
  n \leftarrow \text{length}[A]
  for j \leftarrow 1 to n - 1
         do smallest \leftarrow j
              for i \leftarrow j + 1 to n
                     do if A[i] < A[smallest]
                              then smallest \leftarrow i
              exchange A[j] \leftrightarrow A[smallest]
```