
INSERTION SORT

 Idea: like sorting a hand of playing cards

 Start with an empty left hand and the cards facing down

on the table.

 Remove one card at a time from the table, and insert it

into the correct position in the left hand

 compare it with each of the cards already in the hand, from

right to left

 The cards held in the left hand are sorted

 these cards were originally the top cards of the pile on the

table

1

INSERTION SORT

2

To insert 12, we need to

make room for it by moving

first 36 and then 24.

INSERTION SORT

3

INSERTION SORT

4

INSERTION SORT

5

5 2 4 6 1 3

input array

left sub-array right sub-array

at each iteration, the array is divided in two sub-arrays:

sorted unsorted

INSERTION SORT

6

INSERTION-SORT
Alg.: INSERTION-SORT(A)

 for j ← 2 to n

 do key ← A[j]

 Insert A[j] into the sorted sequence A[1 . . j -1]

 i ← j - 1

 while i > 0 and A[i] > key

 do A[i + 1] ← A[i]

 i ← i – 1

 A[i + 1] ← key

 Insertion sort – sorts the elements in place

7

a8 a7 a6 a5 a4 a3 a2 a1

1 2 3 4 5 6 7 8

key

LOOP INVARIANT FOR INSERTION SORT

Alg.: INSERTION-SORT(A)

 for j ← 2 to n

 do key ← A[j]

 Insert A[j] into the sorted sequence A[1 . . j -1]

 i ← j - 1

 while i > 0 and A[i] > key

 do A[i + 1] ← A[i]

 i ← i – 1

 A[i + 1] ← key

8 Invariant: at the start of the for loop the elements in A[1 . . j-1]
are in sorted order

PROVING LOOP INVARIANTS
 Proving loop invariants works like induction

 Initialization (base case):

 It is true prior to the first iteration of the loop

 Maintenance (inductive step):

 If it is true before an iteration of the loop, it remains true before

the next iteration

 Termination:

 When the loop terminates, the invariant gives us a useful property

that helps show that the algorithm is correct

 Stop the induction when the loop terminates

9

LOOP INVARIANT FOR INSERTION SORT
 Initialization:

 Just before the first iteration, j = 2:

 the subarray A[1 . . j-1] = A[1], (the

element originally in A[1]) – is sorted

10

LOOP INVARIANT FOR INSERTION SORT
 Maintenance:

 the while inner loop moves A[j -1], A[j -2], A[j -3], and so on,

by one position to the right until the proper position for key

(which has the value that started out in A[j]) is found

 At that point, the value of key is placed into this position.

11

LOOP INVARIANT FOR INSERTION SORT
 Termination:

 The outer for loop ends when j = n + 1 j-1 = n

 Replace n with j-1 in the loop invariant:

 the subarray A[1 . . n] consists of the elements originally in A[1 . . n],
but in sorted order

 The entire array is sorted!

12

j j - 1

Invariant: at the start of the for loop the elements in A[1 . . j-1]
are in sorted order

ANALYSIS OF INSERTION SORT

13

INSERTION-SORT(A)

 for j ← 2 to n

 do key ← A[j]

 Insert A[j] into the sorted sequence A[1 . . j -1]

 i ← j - 1

 while i > 0 and A[i] > key

 do A[i + 1] ← A[i]

 i ← i – 1

 A[i + 1] ← key

cost times

 c1 n

 c2 n-1

 0 n-1

 c4 n-1

 c5

 c6

 c7

 c8 n-1

n

j jt
2

n

j jt
2

)1(

n

j jt
2

)1(

)1(11)1()1()(8

2

7

2

6

2

5421

nctctctcncncncnT
n

j

j

n

j

j

n

j

j

tj: # of times the while statement is executed at iteration j

BEST CASE ANALYSIS
 The array is already sorted

 A[i] ≤ key upon the first time the while loop test is run (when i = j

-1)

 tj = 1

 T(n) = c1n + c2(n -1) + c4(n -1) + c5(n -1) + c8(n-1) = (c1 + c2

+ c4 + c5 + c8)n + (c2 + c4 + c5 + c8)

 = an + b = (n)

14

“while i > 0 and A[i] > key”

)1(11)1()1()(8

2

7

2

6

2

5421

nctctctcncncncnT
n

j

j

n

j

j

n

j

j

WORST CASE ANALYSIS

 The array is in reverse sorted order

 Always A[i] > key in while loop test

 Have to compare key with all elements to the left of the j-th

position compare with j-1 elements tj = j

 a quadratic function of n

 T(n) = (n2) order of growth in n2

1 2 2

(1) (1) (1)
1 (1)

2 2 2

n n n

j j j

n n n n n n
j j j

)1(
2

)1(

2

)1(
1

2

)1(
)1()1()(8765421

 nc

nn
c

nn
c

nn
cncncncnT

15

cbnan 2

“while i > 0 and A[i] > key”

)1(11)1()1()(8

2

7

2

6

2

5421

nctctctcncncncnT
n

j

j

n

j

j

n

j

j

using we have:

COMPARISONS AND EXCHANGES IN

INSERTION SORT

INSERTION-SORT(A)

 for j ← 2 to n

 do key ← A[j]

 Insert A[j] into the sorted sequence A[1 . . j -1]

 i ← j - 1

 while i > 0 and A[i] > key

 do A[i + 1] ← A[i]

 i ← i – 1

 A[i + 1] ← key
16

cost times

 c1 n

 c2 n-1

 0 n-1

 c4 n-1

 c5

 c6

 c7

 c8 n-1

n

j jt
2

n

j jt
2

)1(

n

j jt
2

)1(

 n2/2 comparisons

 n2/2 exchanges

INSERTION SORT - SUMMARY

 Advantages

 Good running time for “almost sorted” arrays (n)

 Disadvantages

 (n2) running time in worst and average case

 n2/2 comparisons and exchanges

17

BUBBLE SORT (EX. 2-2, PAGE 38)

 Idea:

 Repeatedly pass through the array

 Swaps adjacent elements that are out of order

 Easier to implement, but slower than Insertion sort

18

1 2 3 n

i

1 3 2 9 6 4 8

j

EXAMPLE

19

1 3 2 9 6 4 8

i = 1 j

3 1 2 9 6 4 8

i = 1 j

3 2 1 9 6 4 8

i = 1 j

3 2 9 1 6 4 8

i = 1 j

3 2 9 6 1 4 8

i = 1 j

3 2 9 6 4 1 8

i = 1 j

3 2 9 6 4 8 1

i = 1 j

3 2 9 6 4 8 1

i = 2 j

3 9 6 4 8 2 1

i = 3 j

9 6 4 8 3 2 1

i = 4 j

9 6 8 4 3 2 1

i = 5 j

9 8 6 4 3 2 1

i = 6 j

9 8 6 4 3 2 1

i = 7

j

BUBBLE SORT

Alg.: BUBBLESORT(A)

 for i 1 to length[A]

 do for j length[A] downto i + 1

 do if A[j] < A[j -1]

 then exchange A[j] A[j-1]

20

1 3 2 9 6 4 8

i = 1 j

i

BUBBLE-SORT RUNNING TIME

Thus,T(n) = (n2)

2
2

1 1 1

(1)
()

2 2 2

n n n

i i i

n n n n
where n i n i n

21

Alg.: BUBBLESORT(A)

 for i 1 to length[A]

 do for j length[A] downto i + 1

 do if A[j] < A[j -1]

 then exchange A[j] A[j-1]

T(n) = c1(n+1) +

n

i

in
1

)1(c2 c3

n

i

in
1

)(c4

n

i

in
1

)(

= (n) + (c2 + c2 + c4)

n

i

in
1

)(

Comparisons: n2/2

Exchanges: n2/2

c1

c2

c3

c4

SELECTION SORT (EX. 2.2-2, PAGE 27)
 Idea:

 Find the smallest element in the array

 Exchange it with the element in the first position

 Find the second smallest element and exchange it with the

element in the second position

 Continue until the array is sorted

 Disadvantage:

 Running time depends only slightly on the amount of order in

the file

22

EXAMPLE

23

1 3 2 9 6 4 8

8 3 2 9 6 4 1

8 3 4 9 6 2 1

8 6 4 9 3 2 1

8 9 6 4 3 2 1

8 6 9 4 3 2 1

9 8 6 4 3 2 1

9 8 6 4 3 2 1

SELECTION SORT

Alg.: SELECTION-SORT(A)

 n ← length[A]

 for j ← 1 to n - 1

 do smallest ← j

 for i ← j + 1 to n

 do if A[i] < A[smallest]

 then smallest ← i

 exchange A[j] ↔ A[smallest]

24

1 3 2 9 6 4 8

ANALYSIS OF SELECTION SORT
Alg.: SELECTION-SORT(A)

 n ← length[A]

 for j ← 1 to n - 1

 do smallest ← j

 for i ← j + 1 to n

 do if A[i] < A[smallest]

 then smallest ← i

 exchange A[j] ↔ A[smallest]

25

n2/2
comparisons

cost times

 c1 1

 c2 n

 c3 n-1

 c4

 c5

 c6

 c7 n-1

1

1
)1(

n

j
jn

1

1
)(

n

j
jn

1

1
)(

n

j
jn

n
exchanges

1 1 1

2

1 2 3 4 5 6 7

1 1 2

() (1) (1) (1) ()
n n n

j j j

T n c c n c n c n j c n j c n j c n n

